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Gevins, A.S., and Cutillo, B.A., (Submitted) Neuroelectric evidence for distributed processing in
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Gevins, A.S., et al. (In Press, 1992) The future of high-resolution EEGs in assessing neurocogni-
tive effects of mild head injury. In: D. Katz & M. Alexander (Eds), Journal of Head Trauma
Rehabilitation, Special Issue. Aspen Publishers, Inc.

Gevins, A.S., Le, J., Brickett, P. Reutter, B. and Desmond, J. (1991) Seeing through the skull:
Advanced EEGs use MRI's to accurately measure cortical activity from the scalp. Brain Topog-
raphy, 4(2): Human Sciences Press, Inc.: New York, pp. 125-131. [Included]

Gevins, A.S. and IMes, J. (1991) Neurocognitive networks of the human brain. In: Zappulla, R.A.
(Ed.) Windows on the Brain: Neuropsychology's Technological Frontiers. New York Academy
of Sciences: New York, pp. 22-44. (Included]

NEURO-TRIGGERED TRAINING (TRIGGER).

The objective of the Trigger project is to determine the feasibility of a method to accelerate the
learning of a task, and optimize its performance by delivering stimuii at instants when prepara-
tory attentional networks are optimal. We plan to achieve this objective by determining the pres-
timulus EEG patterns associated with a subject's accurate task performance using neural-network
pattern recognition, and then training the subject to produce those patterns on a single-trial basis.

According to the plan for executing the project, we are currently in the process of checking-out
the basic Trigger task presentation and data collection system. Brian Cutillo, the Co-PL is
managing the day-to-day conduct of the project. The programming is being supervised by Jim
Johnston, a biophysicist who is experienced in both PC programming and EEG feedback sys-
tems. We have adapted existing software to record EEG and behavioral information on a 486
PC, and are redesigning the stimulus presentation and data analysis/display software in a way
that will allow easy modification of the Trigger system in the course of future development. For
efficiency, a menu system has been written which is used to set and adjust task and feedback
parameters during system development and which will be used later when training subjects. The
first task implemented has been the Bimanual Visuornotor Task (Gevins et al., 1989a), but the



modular program design will allow the system to utilize other tasks.

Currently the system is able to: 1) present the Bimanual Visuomotor Task with behavioral feed-
back and end-of-block behavioral summaries, 2) record 9 channels of EEG (right and left hand
EMG and EOG will be added later), and the output of 2 finger pressure transducers from a sub-
ject perfo-.ming the task, and 3) online quantify behavioral variables including response time,
pressure, duration, accuracy and the adaptive error tolerance. We have set up a small new
recording room for this project and cleared it of 60-Hz electromagnetic noise.

Next steps are to:

1) Make pilot recordings from several "in house" subjects and use the behavioral variables to
form data sets of accurate and inaccurate task trials, statistically balanced for confounding vari-
ables (especially response variables).

2) Decide what features to use in classifying the accurate and inaccurate trials using the SAM
neural network pattern recognition program.

3) Program the PC to extract these features on-line.

4) Implement an on-line algorithm to detect lateral and vertical eye movements and blinks, and
incorrect finger movements or hand EMG activity, and abort the trial if such activity occurs.

5) Run the system in full neurotrigger mode.

When these goals are achieved, hopefully by the middle of year 3, we will begin pilot recordings
to fine tune the system prior to a formal experiment. We may decide to convert the system to
the newly developed "in-hat preamp" system. This will require some additional hardware and
software modifications, but will result in an more flexible, lower noise system.

REPORT OF RESULTS OF MEMORY STUDY

These are the second set of results obtained from the data recorded from 5 Air Force fighter test
pilots several years ago. The first paper was published by the Journal of Electroencephalography
and Clinical Neurophysiology (Gevins et al., 1990, Effects of prolonged mental work on func-
tional brain topogrophy, 76:339-350). The second report is tidled "Neuroelectric evidence for
distributed processing in human working memory", and will be included in our next scheduled
report.

STUDY OF LINGUISTIC AND GRAPHIC PROCESSES: AMPLITUDE AND LATENCY ANALYSIS.

Data for this study were previously analyzed and reported in AFOSR Final Technical Report,
"Empirical Model of Human Higher Cognitive Brain Function" (March 1990). This material and
accompanying graphics are now being prepared for publication, along with some examples of our
new method of Finite Element Model Deblurring applied to two of the language subjects for
whom we obtained MRI images (see Gevins et al., 1991). We are currently working on the



challenging project of extending our measures of functional associaion to these cases of 43-

channel data.

DEVELOPMENT OF INTERDEPENDENCY MEASURES

Our ongoing development and validation studies of the methods of measuring functional associa-
tions between signals from widely distributed areas of the brain is being supervised by Alan
Gevins and Brian Cutillo. The other personnel are working under support from grants from
NINDS, ONR, and NTMH.

Our current effort is based on detection and separation of evoked-potential (EP) components
using a model of linear stochastic mixing. The analysis is currently being carried out on a
single-subject recordings of 43-channel Laplacian Derivation language data, and a
somatosensory-motor task using a 60-channel chronically-implanted subdural grid. Preliminary
results suggest the existence of stable globally coherent spatial patterns corresponding to the EP
components. Time-lagged correlations on the EP components that differ across stimulus condi-
tions may yield better measures of interdependency than the untreated timeseries, and may give a
better indication of the differential temporal and spatial activation of widely distributed sites of
the brain involved in the stages of cognitive processing.
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Seeing Through the Skull: Advanced EEGs Use MRIs to
Accurately Measure Cortical Activity from the Scalp

Aian Gevins, Jian Le, Paul Brickett, Bryan Reufter, and John Desmond

Summary: There is a vast amount of untapped spatial information in scalp- recorded EEGs. Measuring this information requires use of many
electrodes and application of spatial signal enhancing procedures to reduce blur distortion due to transmission through the skull and other tissues.
Recordings with 124 electrodes are now routinely made, and spatial signal enhancing techniques have been developed. The most advanced of these
techniques uses iilormation from a subject's MRI to correct blur distortion, in effect providing a measure of the actual cortical potential distribution.
Examples of these procedures are presented, including a validation from subdural recordings in an epileptic patient. Examples of equivalent dipole
modeling of the somatosensory evoked potential are also presented in which two adjacent fingers are clearly separated. These results demonstrate
that EEGs can provide images of superficial cortical electrical activity with spatial detail approaching that of 015 PET scans. Additionally, equivalent
dipole modeling with EEGs appears to have the same degree of spatial resolution as that reported for MEGs. Considering that EEG technology costs
ten to fifty times less than other brain imaging modalities, that it is completely harmless, and that recordings can be made in naturalistic settings for
extended periods of time, a greater investment in advancing EEG technology seems very desirable.

Key words: High-resolution EEG; Evoked potential; MRI; Spatial signal enhancement; Deblurring; Finite element model; Laplacian derivation.

Introduction advance.
the EEG has been measured for over 60 Much of the groundwork for this development has

Although aeras eed mential for over 30 already been accomplished, including recording from
years, and the averaged evoked potential for over 30, moeta 10 sisfripovd ptalapin
their full potential as brain imaging technologies has not more than 100 sites for improved spatial sampling
teir full peald. as raisnot imag tecnolorest hak not (Gevins et al. 1990), precise measurement and registra-
yet been realized. This is not due to an inherent lack of tion of electrode positions with 3-D MRI images (Gevins

information in EEGs, but to a relative lack of commitment 19 m e foeding th sai r istortin
of rsoucesto et a it Th quntit an qulit of 1989), means for reducing the spatial blur distortionof resources to get at it. The quantity and quality of which occurs when potentials are conducted through

information obtainable from EEGs is currently limited by the sku rs hen potental are Ledu d Gevins

the number of scalp recording sites and the amount and teskull (Gevins 1989; Gevins et al. 1990; Le and Gevins,

type of numerical computing applied. Since the former In Prep. a,b), computation of the "center of mass" of

is only a matter of habit, and since computing has become cortical areas activated by sensory stimulation

so powerful and inexpensive, we feel that it is now (equivalent dipoles; Fender 1987), extraction of spatial
timely oerf tha ingpai, of fEEl toake it iaor multivariate ,eatures and classification of spatial brain
timely for the imaging capability of EEGs to make a major states using neural-network pattern recognition techni-

ques (Gevins 1980; Gevins and Morgan 1988), split-
EEG Systems Laboratory and Sam Technology, San Francisco CA, second measures of functional cortical networks (Gevins

USA. et al. 1981, 1989), development of quantitative norms for
Accepted for publication: September 23, 1991. clinical studies (John 1977), and a myriad of other techni-
Supported by the National Institute of Neurological Diseases and cal developments (reviews in Lopes da Silva et al. 1986;

Stroke, the National Instituteof Mental Health, the National Institute of
Health, the Air Force Office of Scientific Research, the Air Force School Duffy 1986; Gevins and Remond 1987; Basar 1988;
of Aerospace Medicine and the Office of Naval Research. Access to Pfurtscheller and Lopes da Silva 1988; also see special
neurosurgery patients was kindly provided by the Northern California issues of Brain Topography, 1989, Vol. 2(1/2), and 1990
Comprehensive Epilepsy Center at the University of California (San Vol 3(1)). Although a considerable effort has already
Francisco), Dr. Kenneth Laxer, Director, and Dr. Nicolas Barbaro,
Neurosurgeon. Contributions to the research presented here were also been made in many of these areas, an additional major
made by our colleagues at EEG Systems Laboratory including Jim effort will be required to further refine, integrate and
Alexander, Brian Cutillo, Judy McLaughlin, and Michael Ward. validate EEG spatial enhancement methods, and then to
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Gevins, EEG Systems Laboratory, 51 Federal, San Francisco, CA, 94017,
USA. In considering whether it is worth further developing

Copyright 0 1991, Human Sciences Press, Inc. and modernizing the EEG, it is relevant to note that every
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brain imaging modality has its relative strengths and brain surface to the scalp averages about 2.5 cm (Gevins
limitations in terms of spatial and temporal resolution, 1990). Thus, additional information could be obtained by
the nature of the processes measured, and economic and recording with more electrodes spaced closer together,
logistical factors. For example, while 015 PET is one of and then applying signal enhancing methods such as
the imaging methods with the best spatial resolution, those described below to extract more independent infor-
which is approximately 6 to 100 mm for modem PET mation from each electrode. A good goal for future
machines (full width at half maximum; M. Raichle, per- development is 256 channels which provides an inter-
sonal communication; Mintun et al. 1989), 015 PET also electrode distance of about 1.6 cm.
has a number of disadvantages which are not often con- Previous papers have described our traditional
sidered: 1) the required time sample of 45-60 seconds is methods for recording EEGs from 124 scalp sites and
far too long to measure split-second neural processes of measuring the three-dimensional position of each
seizure generation or of cognition; 2) the experimental electrode (Gevins 1989; Gevins et al. 1990). Advanced
designs for PET are highly restricted by safety limitations systems for very rapid electrode placement and position
on allowable dosages of ionizing radiation; and 3) it costs measurement are currently being refined and tested in
roughly five million dollars for a PET facility. While not our laboratory. The two previous papers have also
comparable to PET in 3-D resolution of many simul- described our fifth generation EEG analysis software
taneously active areas throughout the neuroaxis, we system which is a UNIX-based, network-distributed sys-
believe that improved EEG measures can provide images tem written in the C language. A sixth generation system
of superficial cortical activity with a spatial resolution of is currently under development in the C+ + language. It
1-2 square centimeters, and an unsurpassed millisecond- is also a network-distributed system under UNIX, but it
range temporal resolution. Low cost (in the one hundred is based on the X-11 network windowing standard and
to two hundred thousand dollar range), complete harm- incorporates an object-oriented database technology
lessness, ability to record for extended periods of time in which will facilitate processing, viewing and retrieving
a comfortable setting, and opportunity to record the same multichannel time series and three-dimensional image
subject many times make EEG measures additionally data.
attractive.

MRI Analysis and Modeling Methods
124-Channel EEG Recordings Our approach to 3-D anatomical modeling and

Until recently it was assumed by most researchers visualization has been guided by our need to integrate
that, due to the smearing effects of volume conduction, anatomical data obtained from MRIs with functional
the 19 electrodes of the basic 10-20 system were sufficient data obtained from scalp and cortical EEGs. Although
for sampling the spatial information of EEG or EP signals there are now several commercial visualization software
at the scalp. This is clearly not the case, as has been amply packages which can generate 3-D perspective pictures
demonstrated (Lehmann 1986; Wang et al. 1989; Gevins from MRIs, we had to develop our own contouring and
1989,1990). Figure 1 is an example which shows that the surface-based reconstruction techniques and associated
EEG as normally recorded is spatially undersampled. MR processing and display methods as we are more
Isopotential maps are drawn on a scalp surface concerned with 3-D mathematical modeling of the
reconstructed from horizontal MR images of that subject. anatomical structures in the data than with visualization
Data shown are somatosensory evoked potentials to 15- per se. By contrast, the commercial packages are con-
Hz stimulation of the left middle and right index fingers, cemed primarily with volume rendering (Levoy 1988;
for a maximum of 122 channels and desampled to 57, 31 Levin et al. 1989) or surface modeling for visualization
and 18 channels. The spline interpolation algorithm using discontiguous "ribbons" (Heffeman and Robb
makes all the maps visually appealing, but only in the 1985; Jack et al. 1990; implemented by the Analyze
122-channel version is the presence of two separate software package of the Mayo Foundation) or unstruc-
peaks obvious, corresponding to the two fingers stimu- tured lists of triangles created by the "marching cubes"
lated. algorithm (Lorensen and Cline 1987; implemented in the

With the original nineteen electrodes of the 10-20 Sys- apE software package of the Ohio Supercomputer Cen-
tem (jasper 1958), the typical distance between electrodes ter).
on an average adult male head is about 6 cm; with 124 We developed methods and software to do automated
electrodes, the typical distance is 2.25 cm. This is a good threshold-based 2-D contouring of individual MR im-
improvement in sampling resolution, but further im- ages, with optional manual editing, followed by the con-
provements are possible since the 3 dB point of the point struction of triangular 3-D surface elements between
spread function for conductance of potentials from the contours in adjacent images. Our MR images have pic-
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ture elements (pixels) with dimensions that are roughly which would actually be recorded on the surface of the
1 mm by 1 mm, and typically the image planes are brain. We call our implementation of this method Finite
separated from one another by 3 mm. Renderings of Element Model Deblurring (FEMDB) (Gevins et al. 1990;
these surface models are created by using standard 3-D Le and Gevins In Prep. b). The price of the improvement
computer graphics techniques (Foley et al. 1990). For offered by FEMDB is that MRIs have to be recorded and
example, the surface is "illuminated" by a combination processed and many more calculations have to be per-
of direct light, skylight, and diffuse light, and the amount formed. Unlike other methods which estimate cortical
of light reflected from the surface to an arbitrary view- potentials or currents (Nicholas and Deloche 1975;
point is calculated. In addition to generating these realis- Freeman 1980; Hill et al. 1988; Sidman et al. 1989), FEMDB
tic surface renderings, we are able to display data such as is a true "downward continuation" method in that,
EPs or event-related covariances (a measure of function- without prior knowledge or assumptions about the
al networks - Gevins and Bressler 1988) on these sur- generating sources, the cortical potential distribution is
faces. This results in powerful images that help to convey derived given the scalp potential distribution and a
the 3-D complexity of anatomical structure and function. realistic model of the conducting volume between the
Previous papers have described our EEG-MRI alignment scalp and cortical surfaces. In the FEMDB, a transforma-
procedures (figure 2), as well as our basic MRI image tion matrix is constructed based on the geometry and
analysis, recognition and visualization methods (Gevins conductivities of the finite elements which predicts the
et al. 1990; Reutter and Gevins In Prep.). scalp potentials for any given set of cortical potentials.

Then an efficient iterative process is used to find the
EEG Spatial Enhancement Methods cortical potentials which result in the closest fit between

this forward solution and the recorded data. Simulations
Electrical currents generated by sources in the brain of the method in a three sphere model showed that the

are volume conducted through brain, CSF, skull and estimated deblurring results are the same as an analytical
scalp to the recording electrodes. Because of this, poten- computation of the exact solution (Le and Gevins In Prep.
tials due to a localized source are spread over a consider- b). Experiments in which the skull conductivity con-
able area of scalp and the potential measured at a scalp stant was varied over a 50% range showed smooth and
site represents the summation of signals from many sour- well-behaved effects on FEMDB (Le and Gevins In Prep.
ces over much of the brain. We have developed two b).
spatial enhancement methods to correct this blur distor-
tion; neither method requires specification of an arbitrary Comparison of FEM Deblurring With
source model (e.g., current dipoles). Subdural Grid Recording

The simpler method computes a very accurate es-
timate of the surface Laplacian Derivation (LD), which Initial results of FEMDB (figure 4) demonstrate an
is proportional to local normal current at the scalp. This improvement in detail over the Laplacian Derivation
has the advantage of eliminating the effect of the refer- (figure 5) and good agreement between the computed
ence electrode used for recording, and of eliminating and the actual cortical evoked potentials (figure 6) (Le
much of the common activity due to either the reference and Gevins In Prep. b). The data are from a patient with
electrode or volume conduction from distant sources. pharmacologically-intractable seizures for whom we
The disadvantages are that the LD does not produce valid have both scalp and subdural grid recordings of the
values at the outermost ring of electrodes and it does not steady-state somatosensory EP elicited by 15-Hz electri-
correct for local differences in skull thickness and con- cal stimulation of the right hand.
duction properties. Although computing the LD at 'irst
seems trivial (Hjorth 1975), there are in fact a number of Examples of FEM Deblurring
subtleties (Nunez 1989). The most accurate surface LD,
which we have implemented, uses the actual measured An example is shown of deblurring for a normal male
electrode positions, and estimates the LD over the actual subject who was stimulated with 15 Hz auditory, visual
shape of the head using a 3-D spline algorithm (Le and and somatosensory stimuli. Figure 7 shows the
Gevins In Prep. a). Figure 3 shows the LD for the same deblurred steady-state evoked potentials for stimulation
data as in figure 1 (lower right). A dramatic increase in of each of three fingers. Responses to the left and right
spatial detail is apparent with the LD as compared with fingers are appropriately lateralized, and there is an ob-
the linked-ear-reference. vious difference between the middle and index finger of

A further improvement in distortion reduction is pos- the right hand. Figure 8 shows the 15 Hz auditory
sible, in principle, by using a finite element model of the evoked potential, as well as the visual response to
cortex, CSF, skull and scalp to estimate the potentials stimulation of the lower left and right visual quadrants.
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Figure 1. Steady-state somatosensory evoked potentials Figure 2. Electrodes are schematically displayed as small
elicited by 15-Hz stimulation of left middle and right index purple cylinders, at the actual measured positions, on a
finger are shown for an increasing number of channels 3-D model of the subject's head constructed from his MR
from 18 to 122. The potential distributions are shown images.
mapped on a reconstructed scalp surface made from
that subject's MR Images. Only the version with 122 chan-
nels shows the true topography, and allows clear visual
identification of both the left and right-sided peaks.

Figure 4. Finite Element Model Deblurring of steady-state
somatosensory evoked potentials elicited by 15-Hz

Figure 3. Potentials referenced to digitally linked ears (left stimulation of the left hand of an epileptic patient who
- same data as figure 1, lower right) and 3-D spline had a 64-electrode recording grid implanted for purposes
Laplaclan Derivation (right) compared for 122-channel, of surgical screening. The single large peak in the poten-
steady-state somatosensory evoked potentials elicited by tial map (left) is considerably sharpened in the deblurred

stimulation of left middle and right Index fingers, The data (right), which in addition shows some polarity rever-
Laplacian Derivation clearly isolates peaks that were sals. (All surfaces were reconstructed from horizontal MR
merged together In the potentials. images obtained prior to surgery, one of which Is shown In

part between the scalp and cortex on right.)
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Figure 5. Original scalp potentials (left - some data as Figure 6. Comparison of deblurred evoked potentials (left
figure 4, left) and 3-D spline Laplacian Derivation (right). - same data as figure 4, right) with the evoked p' lentials
The Laplacian Derivation also is spatially sharpened com- actually recorded from the subdural grid (right) is shown.
pared with the original potential data, but is less detailed The area covered by the grid shows a single large peak
than the deblurred data shown in figure 4, right, similar to that in the deblurred data.

Deblurred evoked potentials for the visual stimuli show sources than the raw scalp potentials would indicate.
maxima located near the occipital pole, which is the
location of the most likely source, striate cortex (area 17). Equivalent-Dipole Source Localization For
The auditory deblurred evoked potentials are less clearly Somatic and Visual Stimuli
localized, 'as would be expected for this more difficult
case and the limited accuracy of our initial FEM model, Single equivalent dipole modeling of the head was
but are more consistent with bilateral temporal-lobe performed for each of the three 15 Hz somatosensory

Figure 7. Deblurred steady-state evoked potentials Figure 8. Deblurred steady-state evoked potentials
elicited by 15-Hz stimulation of left middle and right middle elicited by 15-Hz auditory and visual stimulation. Rear view
and Index fingers of a normal subject (ms3). All three of the head shows maximal activity at the occipital pole
cases show the expected contralateral maximum In ac- for the parafoveal right and left visual quadrant stimula-
tivity, while the response to right index finger stimulation tion. The auditory response is less clear, but is greater over
differs markedly from that for the right middle finger. the right hemisphere.
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conclusion has recently been demonstrated via direct
comparison of MEG and EEG localization for dipoles
generated by stimulation of electrodes implanted in
epileptic patients (Cohen et al. 1990).

Conclusion
Although hundreds of millions of dollars have been

invested in developing other forms of functional brain
imaging including PET, SPECT, MRSI, and MEG, the
EEG has been relatively overlooked by the scientific,
medical and business community at large. This is unfor-
tunate since it is clear that EEGs, coupled with MRIs, are
capable of providing images of superficial cortical electri-
cal activity with very high temporal resolution and spa-
tial detail approaching that of 015 PET scans. EEGs are

Linherently a low cost technology. They require neither
bulky, expensive sensor technologies, nor ionizing

Figure 9. Single equivalent dipole modeling for each of radiation. We sincerely hope that EEG will receive the
the three 1 5-Hz somatosensory stimulus conditions shown attention and subsequent large-scale development that it
in figure 7. Dipoles are shown with respect to the scalp merits.
surface and a cubic brain model constructed from the
subject's MR images. Each dipole is represented as a
disk with its center on the dipole's location, and with a References
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INTRODUCTION

Among the techniques for studying brain-behavior relationships in humans, scalp-
recorded neural potentials have been used widely for over 50 years. With the technologi-
cal advances of the 1970s and 1980s, new recording and analysis tools have been
developed for obtaining increasingly specific information about the spatial and temporal
features of neurocognitive processes. Such advances have made possible neuroelectric
recordings with many channels, well beyond the original 19 channels of the interna-
tional 10-20 system proposed by Jasper' in the 1950s. These tools have also provided
improved signal processing and means of correlating neuroelectric measures with ana-
tomical information from magnetic resonance images. We will focus on these tools in
the first part of this chapter; in the second part, we will describe how we have been
applying the tools to study the split-second components of higher cognitive functions.

TOOLS OF THE TRADE

Improvd Spatial Sampling

Electrode Arrays with 125 Channels

One of the requirements for extracting detailed information about cognitive pro-
ceses from the scalp-recorded EEG is to have adequate spatial sampling. The 19
channels customarily employed in clinical recordings provide an interelectrode distance
of about 6 cm. While this is sufficient for detecting signs of gross pathology, it is
obviously insufficient for resolving functional differences within small cortical regions.
To improve spatial resolution, we have been making 59-channel recordings for the past
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several years. This provides an interelectrode distance of about 3.5 cm on a typical
adult head, which is still not good enough. To improve sampling, we recently developed
a 125-channel recording system that provides an interelectrode distance of about 2.25
cm. Subjects wear a stretchable EEG recording cap, with electrodes placed on the cap
according to an expanded version of the standard international 10-20 system.2 Prior to
each EEG recording session, the 3-D position of each electrode on the individual
subject's head is measured precisely with a commercial 3-D digitizer (FIG. 1). To date
12 full-scale 125-channel recordings have been made from subjects receiving visual,
auditory, and somatic stimuli.

Registration of Scalp-Electrode Positions with Underlying Anatomical Structures

To visualize the brain areas underlying the scalp electrodes, a procedure is needed
for aligning scalp-electrode positions and underlying anatomical structures. This first
requires producing an accurate anatomical representation of a subject's brain.

Distortion Correction of Magnetic Resonance Images While magnetic resonance
(MR) images are invaluable because of the anatomical differentiation they provide,
they contain inherent distortion that, if not corrected, may cause quantitative measure-
ments of position, length, area, and volume to be erroneous. The distortion can exceed
10% and commonly arises from calibration errors and inhomogeneities of the magnetic
field gradients. We have been working on correcting this problem using both phantom
calibration data and data recorded from human subjects wearing constructed helmets
with spherical fiducial markers that are easily visualized on MR images. It is necessary
to correct both image intensity and image position.

To test our methods, scans from a Diasomcs MTS MR system were made on three
subjects. The maximum total distortion measured on this machine was 8%. Variation
between images with TR = 600 msec and TE = 20 msec and images with TR = 2000
msec and TE = 35 and 70 msec were found to be less than 2%. We compared the
location of the spherical fiducial markets in coronal, sagittal, and axial images, and
various image transforms were then used to bring the measured points into alignment.
We found that by computing a separate scale factor for each direction combined with
a translation and rotation, two sets of images could be brought into reasonably close
alignment. An example of a set of Diasonics MRIs before correction is shown in
FioURE 2A. It is clear that the anatomical positions corresponding to the scalp and
cranium do not line up. The coronal sections shown in blue are shifted to the left of
their correct position. The sagittal sections shown in reddish brown are "stretched" by &
approximately 17% in the anterior/posterior direction compared to the horizontal or
transaxial sections which are shown in dark green. The same images after correcting
for distortion are shown in FiouRtE 2B.

Alignment of EEG Electrode Positions with MR Suface ReconstructionL A linear
transformation is calculated to superimpose electrode positions and the scalp-surface
contours obtained from MR images. This transformation is initially determined by
visually adjusting a graphical display of the electrodes and scalp contours. An optimal
transformation is then calculated by a program that adjusts each parameter in the
transformation until the average distance between all electrode positions and the closest
scalp point is minimized (FIG. 3). The aligned surface model can also be superimposed
onto composite MR images showing various orientations (FIG. 4). Additionally, sur-
faces may be constructed by manually tracing other structures on each MR image and
then calculating the polygonal surface which fits these contours (FIG. 5).
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FIGURE 1. Digitization of scalp electrode positions. The subject is resting in a headrest designed
to minimize head movement. The technician touches the stylus (which contains elecunagnetic
field sensors for x, y, and z axes) to each of the electrodes in turn. The 3-D coordinates of each
electrode position are transmitted to the data -collection and analysis computer.
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FIGURE 2. (A) Composite of distorted MR images in horizontal, sagittal, and coronal orienta-
tions as originally recorded. The location of the scalp is not consistent for different orientations.
(B) Composite of the same images after transformation to correct for distortion. The scalp surface
now appears at the same location in all orientations.
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FIGURE 3. Rough sagittal view of
128-electrode montage constructed
from horizontal MR images and po-
sitioned on the scalp surface. Also
shown is the coordinate system with
the origin located halfway between
the T3 and T4 temporal electrodes.
Some electrodes are not properly
aligned with the scalp surface due to
a mechanical problem that has been
corrected.

FIGURE 4. Rough surface recon-
struction of the scalp from hori-
zontal MR slices with a cutaway to
show horizontal, sagittal, and coro-
nal MR images of the left frontal
lobe. In this early reconstruction,
the sagittal and horizontal slices are
not entirely aligned, causing the sa-
gittal section to protrude from the
surface.

FIGURES. Reconstruction of the
right hemisphere of the brain and
spinal cord viewed from the (A)
right and (B) anteriorly.

A
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Reduction of Brain Potential Blur Distortion

Laplacian Derivation. Neuroelectric signals recorded at the scalp are principally
distorted by transmission through the low-conductance skull. This distortion manifests
as a spatial low-pass filtering which causes the potential distribution at the scalp to
appear blurred or out of focus. There are a number of methods for reducing this
distortion, among which the spatial Laplacian operator is perhaps the simplest and
most effective. This method, which is often referred to as the Laplacian derivation, is
derived by computing the second derivative in space of the potential field at each
electrode. This converts the potential into a quantity proportional to the current
entering and exiting the scalp at each electrode site, and eliminates the effect of the
reference electrode used during recording. An approximation to the Laplacian deriva-
tion, introduced by Hjorth3 ' assumes that electrodes are equidistant and at right angles
to each other. Although this approximation is fairly good for some electrode positions
such as midline central (Cz), it is less accurate for others such as midtemporal (T5).
We have been using a more accurate estimate of the Laplacian derivation that is
based on projecting the measured electrode positions onto a two-dimensional surface.
Although this produces a dramatic improvement in topographic detail, some problems
remain beinuse of the assumptions that surrounding electrodes used to estimate the
Laplacian of an electrode are near that electrode and that the current gradient is
uniform over the region encompassed by the surrounding electrodes. Furthermore, it is
not possible to estimate the Laplacian at peripheral electrodes because the surrounding
electrodes are incomplete.

Spatial Deconvolution Using Spherical Head ModeL By modeling the tissues be-
tween brain and scalp as surfaces with different thicknesses and resistances, we have
performed a deblurring operation that, in principle, makes the potential appear as if it
were recorded just above the level of the brain surface,' without assumptions about the
actual (cortical or subortical) source locations. The deblurring operation, however,
requires detailed modeling of the tissues which, when the exact shape of the head is
taken into account, is a great deal of work. The operation is even further complicated
by the fact that a solution to calculating the local resistance of the skull precisely does
not yet exist. With the conduction of potentials from a localized source spread over a
considerable area of scalp, the summation of signals at any given scalp site may reflect
many sources over much of the brain. In the context of a four-shell spherical head
model, we have estimated the amount of spread-the "point spread"-for a radial
equivalent dipole source in the cortex to be about 2.5 cm. If the conductance of the
skull is known, a deblurring operation using a model-based deconvolution can, in
principle, achieve a better signal enhancement than a Laplacian derivation when the
distance between electrodes is less than approximately the point spr,ad distance of
2.5 cm.

Finite Element Method. Another method of increasing spatial resolution for
those cases for which the source generators can be modeled as current dipoles, and for
which MR data is available, is the finite element method (FEM). The entire volume of
the head, as found in MR images, is broken up into many small elements representing
various tissues: the scalp, skull, and brain. By assigning each element a conductivity
constant (obtained from textbook values) and one for a known source, it is possible to
calculate the potential at each vertex of all the finite elements using Maxwell's equations.
Because the number of vertices is approximately 10,000, an efficient algorithm is
necessary to make this practical on a small computer. Using a SUN Sparc- I workstation
rated at about 12 MIPS, the initial matrix decomposition based on a set of finite
elements takes about 90 min, while the potential computation for each source takes
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6 min. If a practical method can be developed for estimating local skull conductance,
the FEM deblurring method has the capability of producing highly enhanced represen-
tations of the current distribution on the exposed surface of the cortex.

Dctecting Artifacts

The usual practice in evoked potential studies of cognition is to reject automatically
artifacted trials in which the voltage of the eye-movement measurement channels
exceeds a fixed threshold.6 While this procedure catches large contaminants, it entirely
misses small ones. This can lead to a spurious result if there are small, but consistent
saccades or microblinks approximately time-locked to stimulus presentation. Although
we also use an on-line artifact detection procedure to flag automatically portions of
trials and individual electrodes that have unusually high or low amplitude, all data are
examined visually on a graphics terminal to confirm and improve the computer's
detections as needed. In our studies with clinically healthy, young adult subjects, there
is about 10% data attrition due to artifacts.

Data Set Formation: Controlling for Spurious Sources of Variance

After the data have been cleared of instrumental and subject-related artifacts, data
sets are usually formed in pairs to test specific hypotheses. In forming these data sets,
it is imperative that the major difference between two sets be related to the hypothesis
being tested. It is, of course, standard practice to try to eliminate spurious differences
by careful experimental design, but there is always the chance that some remaining
factors differ between sets. These uncontrolled factors can include small residual eye-
movement contaminants, arousal level, and response movement parameters (e.g., force
or reaction time), all of which are known to affect neuroelectric signals.

To ascertain that the major source of variance is actually related to the hypothesis,
the two sets of artifact-free trials are submitted, usually on a subject-by-subject basis,
to an interactive program that displays the means, t tests, and histogram distributions
of up to 50 behavioral and physiological event variables. These include stimulus parame-
ters, reaction time, movement magnitude and duration, error, EEG arousal index,
eye-movement, muscle potential indices, and so on. The data sets are inspected for
significant differences in variables which are not related to the hypothesis, and outliers
are discarded. As an example, an unintentional difference between experimental condi-
tions in response force may be present. In the data set with the larger response force,
the associated movement-related potentials could overlap the P300 evoked potential
peak causing a spurious between-condition difference in P300 amplitude. After careful
balancing of the data sets for such movement parameters, valid assessments about P300
peak effects may be made. In balancing our data we are careful not to truncate the
histogram distribution severely. The unrelated variables are reduced to a between-
condition alpha significance of 0.2, or if this is not possible without seriously affecting
the distribution, to just over 0.05. The net effect of these procedures is the certainty
that when a neuroelectric difference between experimental conditions is found, the
difference actually relates to the hypothesis under consideration.
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Neurocognitive Pattern Analysis

We have been using the term "neurocognitive pattern analysis" (NCP analysis) to
refer to our procedures for extracting task-related spatiotemporal patterns from the
unrelated background activity of the brain. In the first of three generations of NCP
analysis, we measured background EEG spectral intensities while people performed
complex tasks, such as arithmetic problems lasting up to one minute. These patterns
had sufficient specificity to identify the type of task, 7, but when the tasks were controlled
for stimulus-, response-, and performance-related factors, they had identical, spatially
diffuse EEG spectral scalp distributions.7 This study suggested that complex tasks
involving a variety of sensory, cognitive, and motoric processes activate large, wide-
spread areas of cortex to a degree proportional to the subject's effort. It also strongly
suggested that most studies of EEG correlates of cognitive activities, including those
of hemispheric lateralization, may have confounded electrical activity related to limb
and eye movements, stimulus properties, and task difficulty with those of mental activity
per se.

In the second generation of NCP analysis, we measured cross-correlations between
electrodes recorded during performance of simple visuomotor judgment tasks.9 From
this experiment, in which rapidly shifting focal patterns were extracted from two similar
spatia Lasks, it was clear that a split-second temporal resolution is imperative for
isolating the rapidly shifting neurocognitive processes associated with successive infor-
mation processing stages.

In the third generation, we extended our methods to include event-related covari-
ances (ERCs). The ERC approach is based on the hypothesis that when regions of the
brain are functionally related, their event-related potential (ERP, another name for
evoked potential) components are related in shape and in time.'" The idea is that the
ERP waveform delineates the time course of event-related mass activity of a neural
population, so that if two populations are functionally related, their ERPs should line
up in time, perhaps with some delay. If so (and if the relationships are linear as they
often appear to be), this could be measured by the lagged covariance between the ERPs,
or portions of the ERPs, from different regions (FIG. 6). This is the event-related
covariance method.

The procedures that are followed for ERC analysis are described here. Procedures
1-4 have been discussed in detail above.

1. A sufficient amount of data are recorded using as many electrodes as possible.
2. Data with artifact contamination are removed.
3. Pairs of conditions to be compared are selected, and trials with extreme values

of behavioral variables are eliminated.

4. The Laplacian operator is applied to the potential distribution of each non-
peripheral scalp-electrode location.

5. Analysis intervals and digital filter characteristics are determined. The analysis
intervals are usually either centered on an ERP peak, or are positioned just
before or after a stimulus or response.

6. Enhanced, filtered, and decimated averaged Laplacian ERPs for each condition
are computed. (In an optional procedure, used when the signal-to-noise ratio
is very low, a statistical procedure is used to identify trials with measurable
event-related signals, and averages are formed only from those trials.|")

7. Multilag cross-covariance functions are computed between all pairwise channel
combinations of these averaged ERPs in each selected analysis window. The
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magnitude of the maximum value of the cross-covariance function and its lag
time are the features used to characterize the ERC. The covariance analysis
interval is the width of one period of the band-center frequency of each filter.
Down-sampling factors are determined by the 20 dB rejection point, and the
covariance function is computed up to a lag time of one-half period of the high
frequency for each band. For example, we often use a filter with 3 dB cutoffs
at 4 and 7 Hz, and with 20 dB attenuation at 1.5 and 9.5 Hz. The filtered
time series are decimated from 128 to 21 Hz for each covariance calculation.
Covariance is estimated over a 187-msec window, which corresponds to one
period of a 5.5-Hz sinusbid. Each window is lagged by up to 8 lags at the
original undecimated sampling rate, i.e., one hundred-twenty-eighth of a second
per lag.

FIGURE 6. Schematic diagram showing the relationship of an event-related covariance (ERC)
line on a top view of a model head (left) to the theta-band-filtered, averaged event-related Laplacian
derivation waveforms (right). ERCs were computed over the indicated 187-msec analysis interval
from the aPz and aCz electrode sites. The width of an ERC line indicates the significance of the
covariance between two waveforms, with the scale appearing above the word "significance." The
color of the line indicates the time delay in msec (lag time of maximum covariance) as shown in
the scale above "msec delay." The color of the arrow indicates the sign of the covariance (same
color as fine = positive; skin color = negative). The arrow points from leading to lagging channel,
unless there is no delay, in which case a bar is shown. The covariance between aPz and aCz is
significant at p < 10-'. The aPz waveform leads the aCz waveform by about 16-31 msec (green
line), and the covariance is positive (green arrow) (From Gevins et aL *)
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8. The significance of ERCs is determined by reference to an estimate of the
standard deviation of the "noise" ERC. The noise ERC is computed by averag-
ing random intervals in each single trial of the ensemble of trials. ERC analysis
is then performed on a filtered and decimated version of the resulting "noise"
averages, yielding a distribution of "noise" ERCs. The threshold for significance
is reduced according to the dimensionality of the data with Duncan's correction
procedure. The number of channels is used as a conservative estimate of the
number of independent dimensions. The most significant ERCs in each interval
are graphed.

9. ANOVA and post-hoc t tests are used to compare ERC patterns between
conditions. The similarity of appearance of two ERC graphs is measured with
an estimate of the correlation between them. The estimate comes from a
distribution-independent "bootstrap" Monte Carlo procedure,' which also
yields a confidence interval for the estimates.

10. The between-subject variability of ERC patterns is tested by determining
whether each pair of experimental conditions of a particular subject can be
distinguished using discriminating equations generated on the other subjects.

11. The within-subject reliability is assessed by attempting to discriminate the
experimental conditions for each session using equations generated on that
subject's other sessions.

The tests of both between- and within-subject variability and reliability are per-
formed on sets of single trials. This quantifies the extent to which the condition-specific
patterns from the ERC analysis of the average ERPs can be observed in each trial.
Although this procedure could be done with any type of discriminant analysis, we have
developed the use of distribution-independent, layered, artificial "neural network"
pattern classification algorithms for this purpose. 13.14 We have shown that this method
has better sensitivity than stepwise or full-model linear or quadratic discriminant
analysis." The pattern recognition approach has the advantage of testing how well a
subject's individual trials conform to those of the group in discriminating two behav-
ioral conditions of interest. In the same way, the trials of each session of a subject
are tested by conformity to trials from the other sessions of that subject. Requiring
trial-by-trial discriminability is a strict condition for deciding between-subject variabil-
ity and within-subject reliability.

Each subject's classification yields a score, which is the percent of trials that are
correctly classified by the group discrimination equations. The score is assessed for
significance by comparison to the binomial distribution." A significant classification
score for a subject indicates that the group equations are successful in discriminating
the two conditions in his or her trials.

Within-subject (between-session) reliability is tested in a similar manner. The trial
set (consisting of the two conditions) from each of a subject's sessions is tested with
equations developed on the trial sets from his or her other sessions. The single-trial
ERC values come from channel pairs that are significant in the ERC pattern formed
from the average over all his or her sessions. Post-hoc comparisons are valuable in
determining whether effects of learning and/or habituation are evident over sessions,
by indicating which sessions are alike and where transitions occur between sessions.

FIGURE 7 is a block diagram of the data collection and analysis process discussed
above. For studies not requiring pattern recognition analysis, the event-related covari-
ances are computed on averaged event-related potentials after band-pass filtering.

In the next section, results of a study of bimanual visuomotor performance and a
study of the effects of mental fatigue on human cognitive networks are presented.
Preliminary results of a study of elementary language processes are also described.
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FIGURE 7. ADIEEG-V system for pattern recognition of event-related brain signals. Seperate
subsystems perform on-line experimental control and data collection, data selection and evalua-
tion, signal processing and pattern recognition. Current capacity is 128 channels.
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APPLYING THE TOOLS

Bimanual Visuomotor Task

One of the goals of the bimanual visuomotor experiment was to study prefrontal
involvement while subjects prepared to perform a task accurately and used feedback
about their accuracy to gauge their responses.'6 -1

' Subjects and Task

Seven healthy, right-handed, male adults participated in this study. A visual cue,
slanted to the right or to the left, prompted the subject to prepare to make a response
pressure with the right or left index finger. One sec later, the cue was followed by a
visual numeric stimulus (numbers 1-9) indicating that a pressure of 0.1 to 0.9 kg should
be made with the index finger of the previously indicated hand. A two-digit number,
presented I sec after the peak of the response pressure, provided feedback that indicated
the subject's exact pressure. On a random 20% of the trials, the stimulus number was
slanted in the opposite direction to the cue: subjects were to withhold their responses
on these "catch trials." The next trial followed I sec after disappearance of the feedback.
Each subject performed several hundred trials, with rest breaks as needed.

Recordings

Twenty-six channels of EEG data, as well as vertical and horizontal eye-movements
and flexor digitori muscle activity from both arms, were recorded. All single-trial
EEG data were screened for eye-movement, muscle potential, and other artifacts, and
contaminated data were discarded.

Analysis and Results

Intervals used for ERC analysis were centered on major event-related potential
peaks. ERCs were computed between each of the 120 pairwise combinations of the 16
nonperipheral channels. Intervals were set from 500 msec before the cue to 500 msec
after the feedback. We first calculated the mean error (deviation from the required
finger pressure) over all trials from the recording session. Individual trials were then
classified as accurate (trial error less than mean error) or inaccurate (trial error greater
than mean error).

ERC patterns during a 375-msec interval, centered 687 msec post-cue (spanning
the late contingent negative variation -CNV), regardless of subsequent accuracy, in-
volved left prefrontal sites, as well as appropriately lateral.zed central and parietal sites
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(FIG. 8A and B). Inaccurate performance by the right hand was preceded by a very
simple pattern, while inaccurate performance by the left hand was preceded by a
complex, spatially diffuse pattern. The relative lack of ERCs preceding inaccurate
right-hand performance may simply reflect inattention on those trials, while the strong
and complex patterns preceding inaccurate performance with the left hand may reflect
effortful, but inappropriate, preparation by the right-handed subjects.

ERC patterns related to feedback about accurate and inaccurate performances were
similar immediately after the onset of feedback, but began to differ in an interval,
centered at 375 msec, that spanned the P3 (FIG. 9A and B). The ERC patterns for
feedback to accurate performance by the two hands were very similar (bootstrap
correlation = 0.91 t 0.01), involving midline anterocentral, central, anteroparietal,
parietal, and anterooccipital sites; left anteroparietal and anterocentral sites; and right
parietal, anteroparietal, anterocentral, and frontal sites. These accurate patterns in-
volved many long-delay (32-79 msec) ERCs. The waveforms of the frontal and antero-
central sites lagged those of more posterior sites. For feedback to inaccurate perform-
ance, patterns for both hands were also very similar (bootstrap correlation = 0.90 ±
0.02) and involved most of the same sites as the accurate patterns, with the striking
inclusion of the left and midline frontal sites. Again, frontal waveforms lagged those
of the more posterior sites with which they covaried. There were even more long-delay
ERCs than in the accurate patterns.

Summary

The pre-stimulus ERC patterns seem to characterize a distributed preparatory
neural set that is related to the accuracy of subsequent task performance. This network
involves distinctive cognitive (frontal), integrative-motor (midline precentral) and later-
alized somesthetic-motor (central and parietal) components. The involvement of the
left-frontal site is consistent with Teuber's" notions of corollary discharge and with
other experimental and clinical findings suggesting the synthesis and integration of
functional networks in prefrontal cortical areas.2 - 1 A midline anterocentral
integrative-motor component is consistent with known involvement of premotor and
supplementary motor areas in initiating motor responses. The finding of an appropri-
ately lateralized central and parietal component is consistent with evidence from pri-
mates and humans for neuronal firing in motor and somatosensory cortices prior to
motor responses.

FIGURE S. Preparatory event-related covariance (ERC) patterns (colored lines). Measurements
are from an interval 500 to 875 msec after the cue for subsequently accurate (A) right-hand and
(B) left-hand visuomotor task performance by seven right-handed men. The ERCs are superim-
posed for illustrative purposes over a horizontal MR scan. The thickness of a covariance line is
proportional to its significance (from .05 to .005). A violet line indicates the covariance is positive,
while a blue line is negative. ERCs involving left frontal and appropriately contralateral central
and parietal electrode sites are prominent in patterns for subsequently accurate performance of
both hands. The magnitude and number of preparatory ERCs are greater preceding subsequently
inaccurate left-hand performance than those preceding inaccurate right-hand performance by
the right-handed subjects. Inaccurate left-hand preparatory ERCs are more widely distributed
compared with the left-hand accurate pattern. For the right-hand, fewer and weaker ERCs
characterize subsequenty inaccurate performance.
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Since ERC feedback patterns of accurate or inaccurate performance (involving
either hand) were more similar than those between accurate and inaccurate patterns
for one hand, it may be inferred that the feedback patterns were related more to
performance accuracy than to the hand used. The fact that ERC patterns following
disconfirming feedback involved more frontal sites than did patterns following confirm-
ing feedback is consistent with the idea that greater resetting of performance-related
neural systems is required following disconfirming feedback. Likewise, the front focus
of these differences is consistent with the importance of the frontal lobes in the integra-
tion of sensory and motor activities. 20

,
2 3

Effects of Mental Fatigue on Functional Brain Topography

In this study, the effects of mental fatigue on preparation and memory, stimulus
recognition and stimulus processing were studied.24

Subjects and Task

Five healthy, right-handed, male subjects performed a task that required that they
remember two continuously changing numbers, in the presence of numeric distractors,
and produce precise finger pressures. Each trial consisted of a warning symbol, followed
by a single-digit visual stimulus to be remembered, followed by the subject's finger-
pressure response to the stimulus number presented two trials ago, followed by a
two-digit feedback number indicating the accuracy of the response. For example, if the
stimulus numbers in five successive trials were 8, 6, 1, 9, 4, the correct response would
be a pressure of 0.8 kg when seeing the 1, 0.6 kg for the 9, and 0.1 kg for the 4. To
increase the task difficulty, subjects were required to withhold their response on a
random 20% of the trials. These "no-response catch trials" were trials in which the

current stimulus number was identical to the stimulus two trials ago. Subjects were
given ample practice to stabilize accuracy and reaction time.

Subjects performed the task over a 10-14 h period. Sets of trials with equally
accurate performance and response movement parameters were selected from three
periods: an early period during the first 7 h (Alert), a middle period just prior to any

decline in overall performance accuracy (Incipient Performance Impairment), and a
late period after performance had significantly degraded.

FIGURE 9. Most significant (top 2 SD) feedback ERC patterns elicted when subjects were given
information about the accuracy of their finger pressure response by the right hand (A) and left
hand (B). ERCs were derived from a 187-msec-wide interval, beginning 281 msec and ending 468
msec post-feedback, on theta-band-filtered, 7-subject-averaged evoked potential waveforms. The
color of the covariance line indicates the lag time of maximum covariance between electrodes:
yellow, 0-15 msec; green, 16-31 msec; blue, 32-47 msec; red, 48-79 msec; purple, 80+ msec. A
major difference between accurate and inaccurate patterns is that the left and midline frontal sites
are only involved in the inaccurate patterns. The involvement of these sites may reflect greater
processing after inaccurate performance in order to improve subsequent performance.
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Recordings

EEGs were recorded with either 33 or 51 channels set in a nylon mesh cap. Vertical
and horizontal eye movements were also recorded, as were the responding flexor digitori
muscle potentials, electrocardiogram, and respiration. Three-axis magnetic resonance
image scans were made of three of the five subjects.

Analysis and Results

Neuroelectric effects were observed during two fraction-of-a-second intervals when
subjects (1) prepared to receive a new stimulus number while holding the two previous
stimulus numbers in working memory (CNV interval), and (2) when they withheld
their response in the instance where the current stimulus number was the same as the
two-back stimulus number (P300 interval). Significant differences were seen between
the early Alert period and the middle Incipient Performance Impairment (IPI) period
(p < 0.0001). While the magnitude of the patterns was reduced during both preparatory
and response inhibition intervals, the topographic distribution of the pattern was only
affected during preparation (FIG. '0). The preparatory pattern shifted from one strongly
focused on midline central and precentral sites to one focused primarily on right-sided
precentral and parietal sites. It appeared as though extended task-performance altered
the "neural strategy" used to perform the same behavior. Thus, prolonged mental work
differentially affected two successive split-second information processing intervals.

The extent to which each subject's patterns corresponded to the group's and the
extent to which it was possible to distinguish individual trials from the Alert and IPI
periods of the session were determined next using pattern recognition analysis. ERCs
common to the group (FIG. 10, left and middle) were considered as possible variables.
For the preparatory interval, they consisted of ERCs computed over the 500 msec
pre-stimulus epoch of each trial. For separate groups of three and two subjects whose
resting EEG characteristics differed, five equations were formed on four-fifths of the
trials, and tested on the remaining one-fifth. The average test set accuracy of Alert
versus IPI discrimination was then computed and tested for significance by reference
to the binomial distribution. Discrimination accuracy was 62% (p < 0.001). Individual-
ized equations were generated on the subject with the most usable data, still using the
variables from the group pattern. Discrimination accuracy climbed to 81% (p <
0.0001).

Summary

Striking changes occurred in the ERC patterns after subjects performed the difficult
memory and fine-motor control task for an average of 7-9 h, but before performance
deteriorated. Pattern strength was reduced in a fraction-of-a-second-long response
preparation interval over midline precentral areas and over the entire left hemisphere.
By contrast, pattern strength in a succeeding response-inhibition interval was reduced
over all areas. The pattern changed least in an intervening interval associated with
visual-stimulus processing. This suggests that, in addition to the well-known global



GEVINS & ILLES: NEUROCOGNITIVE NETWORKS 39

reduction in neuroelectric signal strength, functional neural networks are selectively
affected by sustained mental work in specific fraction-of-a-second task intervals. For
practical application, these results demonstrate the possibility of detecting leading
indicator neuroelectric patterns which precede degradation of performance due to
sustained mental work.

Neurocognitive Analysis of Elementary Language Processes

Preliminary results of a recent experiment demonstrate good spatial and temporal
differentiation of basic linguistic functions using 59-channel EEG recordings.

Subjects and Task

Nine right-handed, healthy male subjects performed a language task in which they
had to judge whether the second visually presented stimulus of a given condition (S2)
formed a match with the first stimulus (SI). There were four, fully randomized condi-
tions in the experiment. In the graphic non-letter condition, the stimuli were characters
of Katakana, a Japanese script with which none of the subjects were familiar. Subjects
were required to judge whether or not the stimuli were identical. In the phonemic
condition, subjects were required to judge if the pronounceable but neologistic word
stimuli sounded alike. In the semantic condition, subjects were required to decide if
the high frequency, open-class monosyllabic words were opposite or not. Finally, in
the grammatical condition, subjects judged if the verb of the S2 formed a meaningful
and grammatically correct sentence with the S1 pronoun. Eighty-five percent of the
trials were "match" trials and no response was required; subjects responded to the
15% mismatch trials with a button press using the left index finger.

Recordings

EEGs referenced to the midline anterior-parietal (aPz) electrode were recorded
from 59 scalp electrodes. The montage was an extended 10-20 system,2 and included
the frontal sites aFI and aF2, Fz, F3 to F%, and Fpz; the anterior central aCz, aCl to
aC6; central Cz, C3 and C4; anterior temporal aT5 and aT6; temporal T3 to T8; lower
temporal ITI, IT2, IT5, 1T6; ventral temporal vT5 and vT6; anterior parietal aPI to
aP6; parietal Pz, P3 to P6; anterior occipital aOl and a02; occipital Oz, 01 and 02;
ventral occipital vOl and vO2; and the inion (I) and both mastoids (MI and M2).
Vertical eye movements were recorded bipolarly from an electrode pair placed supra-
and suborbitally; horizontal eye movements were recorded bipolarly between electrodes
at the outer canthus of each eye. Other bipolar pairs were placed over flexor digitori
muscles of left and right arms to record EMG and at the submentalis to record subvocal
movements of the larynx and mouth. The EEG was amplified 8333 times, band-pass
filtered from 0.5-50 Hz and recorded at 128 samples per sec.
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FIGURE 10. Pattern recognition analysis using an artificial, layered neural network that distin-
guished ERC neuroelectric patterns recorded during baseline (early), incipient performance im-
pairment (middle), and impaired performance (late) periods from five Air Force test pilots per-
forming a difficult visuomotor-memory task over a 14-h period. Baseline data were obtained
during the first 7 hours; incipient performance impairment data during hours 7-10 preceding
impaired performance; the impaired performance data were obtained during hours 10-14. The
ERCs were measured during a 500-msec interval when the subjects were remembering two
numbers and preparing for the next stimulus. ERCs greatly declined in magnitude from baseline
(early) to incipient performance impairment (middle) to impaired performance (late) epochs. The
patterns also changed, with the emphasis shifting from the (1) midline central, (2) midline
precentral, and (3) left parietal sites to right hemisphere sites.

FIGURE 11. LD wavefrms evoked by the first of two stimuli (syntactic and semantic) in an
experiment designed to study elementary language processes. The waveforms are averaged across
nine subjects. The major difference between the grammatic (syntactic) and semantic conditions is
lateURlized to the left hemisphere, where the grammatic condition has a substantial peak at 442

msec at left frontal and anterior central sites. The x-axis shows 1-sec beginning with the SI. The
y-axis corresponds to - 0.153 gV/sq cm.

40
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Analysis and Results

Analysis of both ERP and ERC data is ongoing. Among the condition differences
observed to date, for example, syntactic and nonsyntactic trials were clearly differenti-
ated by ERP topography. After SI, the grammatic (syntactic) condition alone had a
substantial peak at 442 msec at lateral frontal and anterior central sites. N442 was
most robust at F3 (Fio. 11), F5, and aCl, where it was significantly larger than in the
semantic condition (p < 0.05). After S2 (not shown), the grammatic condition was
again distinguished from the semantic condition by a positive peak at 279 nsec at left
frontal and anterior central electrodes. At these sites, the grammatic P279 was larger
in amplitude than in the semantic condition (p < 0.05). It was not significantly
lateralized.

Summary

Stimuli in both the nonsyntactic and syntactic conditions in this experiment were
words with similar physical characteristics. The main difference between them post-S 1
was that the semantic (nonsyntactic) condition used open-class words (content words
such as nouns and adjectives) and the grammatic (syntactic) condition used closed-class
words (function words), in this case pronouns. It is possible that the N411 observed
for the syntactic condition is related to processing the closed-class words, to the
initiation of a "syntactic parser,"25 or to both processes simultaneously. The location
of the "syntactic" effect at left frontal sites (F3, F5, and aC3) after both S I and S2 is
consistent with neurophysiological observations of syntactic deficits and difficulties in
handling closed-class words in aphasia patients whose lesions involve and extend deep
to Broca's area.

CONCLUSIONS

Methodological

Advances in neuroelectric recording and analysis technology during the past two
decades have significantly increased the sensitivity and specificity of measuring brain-
behavior ndationships. Sharper spatial resolution is provided by an increased number
of electodes and by use of the Laplacian derivation. Information about common
activity and its temporal relationships is provided by the event-related covariance
measure, while neural network pattern recognition analysis provides a powerful method
of detecting neurocognitive signals in sets of single-trial data. The signs we have
seen of rapidly shifting, functionally interdependent cortical networks are particularly
intriguing in light of their consistency with both historical and contemporary, clinical
and experimental findings about brain-behavior relationships. In our current research,
we hope to further refine and elaborate these methodological and experimental para-
digms.
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Models of Neural Information Processing in Cognitive Electrophysiology

Because of the stimulus-response design inherent in most experimental designs,
many models of cognitive functioning have a passive tone. The brain reacts to a given
stimulus, and the stages leading to response are inferred from measures of reaction
time, ERP peak latencies, and so on. However, we know from experience, observation,
and inference that cognitive processes are highly interactive. Our environment is, in a
sense, altered by our perception of it, because perception itself is a synthesis of sensation,
current brain state, and past cognitive experience. This synthesis involves a continu-
ously updated, dynamic internal representation of what we imagine our selves and
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FIGURE 12. Sketch of parallel, sequential, hierarchically organized information processing in
functional networks of the human neocortex. The previous moment's internal model influences
the current moment's goal direction and attention, which in turn influences other stages of
processing.

eiviommt to be like at any given moment. Moreover, we use our effector and sensory
systems to probe actively the environment for information relevant to maintaining and
updating the self/world model (FIG. 12). Each perception, each action is incorporated
into the internal model, and new perceptions and actions are in turn influenced through
the model's role in directing attentional and conceptual processes. It is challenging,
but not impossible, to design experimental situations which emphasize this dynamic
and interactive nature of cognition. Two areas that have been of particular interest to
us are preparatory processes, which precede the stimulus and are directed by the
internal model, and feedback, which governs the updating of the model after behaviors.
Although it is likely that the frontal cortex plays a pivotal role in both processes, it
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would be simplistic to consider the frontal lobes as a mere executor. Rather, it is likely
that the entire brain is involved in a constellation of rapidly changing, functional
networks that provide the delicate balance between stimulus-locked behavior and
purely imaginary ideation. The pre-stimulus and the feedback-associated "processing
networks" observed in our studies may be signs of such interrelated activity. With even
further advances in brain imaging in neuropsychophysiology in the 1990s, we can hope
to achieve increasingly detailed and direct measurements of the organization and
interrelationships of sensory and higher cognitive behaviors in health and in disease.
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